

ABOUT EUREKA MATH

Created by the nonprofit Great Minds, *Eureka Math* helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus—a principle tested and proven to be essential in students' mastery of math.

Teachers and students using *Eureka Math* find the trademark "Aha!" moments in *Eureka Math* to be a source of joy and inspiration, lesson after lesson, year after year.

ALIGNED

Eureka Math is the only curriculum found by EdReports.org to align fully with the Common Core State Standards for Mathematics for all grades, Kindergarten through Grade 8. Great Minds offers detailed analyses which demonstrate how each grade of Eureka Math aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.

DATA

Schools and districts nationwide are experiencing student growth and impressive test scores after using *Eureka Math*. See their stories and data at greatminds.org/data.

FULL SUITE OF RESOURCES

As a nonprofit, Great Minds offers the *Eureka Math* curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/math/curriculum.

The teacher—writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- · Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

New York State Next Generation Mathematics Learning Standards Correlation to *Eureka Math*™

ALGEBRA I

The majority of the Algebra I New York State Next Generation Mathematics Learning Standards are fully covered by the Algebra I *Eureka Math* curriculum. The areas where the Algebra I New York State Next Generation Mathematics Learning Standards and Algebra I *Eureka Math* do not align will require the use of *Eureka Math* content from other courses. A detailed analysis of alignment is provided in the table below.

INDICATORS

- Green indicates that the New York standard is fully addressed in *Eureka Math*.
- Yellow indicates that the New York standard may not be completely addressed in *Eureka Math*.
- Red indicates that the New York standard is not addressed in *Eureka Math*.
- Blue indicates there is a discrepancy between the grade level at which this standard is addressed in the New York standards and in *Eureka Math*.

Aligned Components of Eureka Math

1: Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Lessons in every module engage students in making sense of problems and persevering in solving them as required by this standard. This practice standard is analogous to the CCSSM Standards for Mathematical Practice 1, which is specifically addressed in the following modules:

Algebra I M1: Relationships Between Quantities and Reasoning with Equations and Their Graphs

Algebra I M2: Descriptive Statistics

Algebra I M3: Linear and Exponential Functions

Algebra I M4: Polynomial and Quadratic Expressions, Equations, and Functions

Aligned Components of Eureka Math

2: Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to *decontextualize*—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to *contextualize*, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Lessons in every module engage students in reasoning abstractly and quantitatively as required by this standard. This practice standard is analogous to the CCSSM Standards for Mathematical Practice 2, which is specifically addressed in the following modules:

Algebra I M1: Relationships Between Quantities and Reasoning with Equations and Their Graphs

Algebra I M2: Descriptive Statistics

Algebra I M3: Linear and Exponential Functions

Algebra I M4: Polynomial and Quadratic Expressions, Equations, and Functions

Aligned Components of Eureka Math

3: Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Lessons in every module engage students in constructing viable arguments and critiquing the reasoning of others as required by this standard. This practice standard is analogous to the CCSSM Standards for Mathematical Practice 3, which is specifically addressed in the following modules:

Algebra I M1: Relationships Between Quantities and Reasoning with Equations and Their Graphs

Algebra I M2: Descriptive Statistics

Aligned Components of Eureka Math

4: Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts, and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Lessons in every module engage students in modeling with mathematics as required by this standard. This practice standard is analogous to the CCSSM Standards for Mathematical Practice 4, which is specifically addressed in the following modules:

Algebra I M1: Relationships Between Quantities and Reasoning with Equations and Their Graphs

Algebra I M2: Descriptive Statistics

Algebra I M3: Linear and Exponential Functions

Algebra I M4: Polynomial and Quadratic Expressions, Equations, and Functions

Aligned Components of Eureka Math

5: Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

Lessons in every module engage students in using appropriate tools strategically as required by this standard. This practice standard is analogous to the CCSSM Standards for Mathematical Practice 5, which is specifically addressed in the following modules:

Algebra I M2: Descriptive Statistics

Algebra I M4: Polynomial and Quadratic Expressions, Equations, and Functions

Aligned Components of Eureka Math

6: Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

Lessons in every module engage students in attending to precision as required by this standard. This practice standard is analogous to the CCSSM Standards for Mathematical Practice 6, which is specifically addressed in the following modules:

Algebra I M1: Relationships Between Quantities and Reasoning with Equations and Their Graphs

Algebra I M2: Descriptive Statistics

Algebra I M4: Polynomial and Quadratic Expressions, Equations, and Functions

Aligned Components of Eureka Math

7: Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5 + 7 \times 3$, in preparation for learning about the distributive property. In the expression $x^2 + 9x + 14$, older students can see the 14 as 2×7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

Lessons in every module engage students in looking for and making use of structure as required by this standard. This practice standard is analogous to the CCSSM Standards for Mathematical Practice 7, which is specifically addressed in the following modules:

Algebra I M1: Relationships Between Quantities and Reasoning with Equations and Their Graphs

Algebra I M3: Linear and Exponential Functions

Algebra I M4: Polynomial and Quadratic Expressions, Equations, and Functions

Aligned Components of Eureka Math

8: Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y - 2)/(x - 1) = 3. Noticing the regularity in the way terms cancel when expanding (x - 1)(x + 1), $(x - 1)(x^2 + x + 1)$, and $(x - 1)(x^3 + x^2 + x + 1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Lessons in every module engage students in looking for and expressing regularity in repeated reasoning as required by this standard. This practice standard is analogous to the CCSSM Standards for Mathematical Practice 8, which is specifically addressed in the following modules:

Algebra I M1: Relationships Between Quantities and Reasoning with Equations and Their Graphs

Algebra I M3: Linear and Exponential Functions

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math		
Number	The Real	Cluster: Use properties of rational and irrational numbers.			
and Quantity	Number System	AI-N.RN.3 Use properties and operations to understand the different forms of rational and irrational numbers.			
		a. Perform all four arithmetic operations and apply properties to generate equivalent forms of rational numbers and square roots.	Geometry M2 Topic D: Applying Similarity to Right Triangles Algebra II M1 Lesson 9: Radicals and Conjugates Algebra II M1 Lesson 22: Equivalent Rational Expressions Algebra II M1 Lesson 23: Comparing Rational Expressions Algebra II M1 Lesson 24: Multiplying and Dividing Rational Expressions Algebra II M1 Lesson 25: Adding and Subtracting Rational Expressions		

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		b. Categorize the sum or product of rational or irrational numbers.	Algebra I M4 Lesson 13: Solving Quadratic Equations by Completing the Square
		 The sum and product of two rational numbers is rational. 	
		 The sum of a rational number and an irrational number is irrational. 	
		 The product of a nonzero rational number and an irrational number is irrational. 	
		The sum and product of two irrational numbers could be either rational or irrational.	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	Quantities	Cluster: Reason quantitatively a	nd use units to solve problems.
		AI-N.Q.1 Select quantities and use units as a way to: i) interpret and guide the solution of multi-step problems; ii) choose and interpret units consistently in formulas; and iii) choose and interpret the scale and the origin in graphs and data displays.	Algebra I M1: Relationships Between Quantities and Reasoning with Equations and Their Graphs
		AI-N.Q.3 Choose a level of accuracy appropriate to limitations on measurement and context when reporting quantities.	Algebra I M1 Topic A: Introduction to Functions Studied this Year—Graphing Stories Algebra I M5: A Synthesis of Modeling with Equations and Functions

Conceptual Category	Domain	Standards for Mathematical Aligned Components of <i>Eureka Math</i> Content				
Algebra	Seeing	Cluster: Interpret the structure of expressions.				
	Structure in Expressions	AI-A.SSE.1 Interpret expressions that represent a quantity in terms of its context.				
		a. Write the standard form of a given polynomial and identify	_	14 Lessons 1–2: Multiplying and Factoring LExpressions		
		the terms, coefficients, degree, leading coefficient, and constant term.	_	14 Lessons 3–4: Advanced Factoring Strategies tic Expressions		
		b. Interpret expressions by viewing one or more of their parts as a single entity.	llgebra I M Problems	11 Topic D: Creating Equations to Solve		
	pa		lgebra I M	13 Topic A: Linear and Exponential Sequences		
			_	14 Lesson 6: Solving Basic One-Variable Equations		
			lgebra I M	14 Lesson 12: Completing the Square		
			_	M4 Lesson 17: Graphing Quadratic Functions candard Form, $f(x) = ax^2 + bx + c$		

Conceptual Category	Domain	Standards for Mathematical Content		Aligned Components of Eureka Math
		AI-A.SSE.2		Algebra I M1 Topic B: The Structure of Expressions
		Recognize and use the structure of an expression to identify ways to rewrite it.		Algebra I M1 Lesson 17: Equations Involving Factored Expressions
				Algebra I M4 Topic A: Quadratic Expressions, Equations, Functions, and Their Connection to Rectangles
				Algebra I M4 Lessons 11–12: Completing the Square
		Cluster: Write expressions in eq	ui	valent forms to reveal their characteristics.
		AI-A.SSE.3		
		Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.		
		c. Use the properties of exponents to rewrite exponential expressions.		Algebra I M3 Lesson 23: Newton's Law of Cooling Algebra II M3 Lesson 26: Percent Rate of Change

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math	
	Arithmetic	Cluster: Perform arithmetic operations on polynomials.		
	with Polynomials	AI-A.APR.1 Add, subtract, and multiply	Algebra I M1 Topic B: The Structure of Expressions	
	and Rational Expressions	polynomials and recognize that the result of the operation is also a polynomial. This forms a system analogous to the integers.	Algebra I M4 Lessons 1–2: Multiplying and Factoring Polynomial Expressions	
			Algebra I M4 Lessons 3–4: Advanced Factoring Strategies for Quadratic Expressions	
		Cluster: Understand the relationship between zeros and factors of polynomials.		
		AI-A.APR.3 Identify zeros of polynomial functions when suitable factorizations are available.	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$ Algebra I M4 Lesson 15: Using the Quadratic Formula	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math		
	Creating	Cluster: Create equations that describe numbers or relationships.			
	Equations	AI-A.CED.1 Create equations and inequalities in one variable to represent a realworld context.	Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator Algebra I M1 Topic D: Creating Equations to Solve Problems Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable Algebra I M5 Lesson 6: Modeling a Context from Data Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description		

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		AI-A.CED.2	Algebra I M1 Lesson 5: Two Graphing Stories
		Create equations and linear inequalities in two variables to represent a real-world context.	Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables
			Algebra I M1 Lesson 23: Solution Sets to Simultaneous Equations
			Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
			Algebra I M1 Lesson 28: Federal Income Tax
			Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
			Algebra I M4 Lesson 12: Completing the Square
			Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
			Algebra I M4 Lessons 23–24: Modeling with Quadratic Functions
			Algebra I M5: A Synthesis of Modeling with Equations and Functions

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		AI-A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.	Algebra I M1 Lesson 15: Solution Sets of Two or More Equations (or Inequalities) Joined by "And" or "Or" Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities Algebra I M1 Lesson 27: Recursive Challenge Problem— The Double and Add 5 Game Algebra I M3 Topic B: Functions and Their Graphs Algebra I M3 Lesson 24: Piecewise and Step Functions in Context
		AI-A.CED.4 Rewrite formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	Algebra I M1 Lesson 19: Rearranging Formulas

Conceptual Category	Domain	Standards for Mathematical Content Aligned Components of Eureka Math			
	Reasoning with	Cluster: Understand solving equations as a process of reasoning and explain the reasoning.			
	Equations and	AI-A.REI.1a		Algebra I M1 Lesson 12: Solving Equations	
	and Inequalities	Explain each step when solving a linear or quadratic equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution		Algebra I M1 Lesson 13: Some Potential Dangers when Solving Equations Algebra I M1 Lesson 17: Equations Involving Factored Expressions Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator	
		method. Cluster: Solve equations and inequalities in one variable.			
		Cluster: Solve equations and me	qı	tanties in one variable.	
		AI-A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.		Algebra I M1: Relationships Between Quantities and Reasoning with Equations and Their Graphs	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		AI-A.REI.4 Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^2 = q$ that has the same solutions. Understand that the quadratic formula is a derivative of this process.	Algebra I M4 Lesson 13: Solving Quadratic Equations by Completing the Square Algebra I M4 Lesson 14: Deriving the Quadratic Formula
		b. Solve quadratic equations by: i) inspection, ii) taking square roots, iii) factoring, iv) completing the square, v) the quadratic formula, and vi) graphing. Recognize when the process yields no real solutions.	Algebra I M4 Lesson 5: The Zero Product Property Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$ Algebra I M4 Lesson 13: Solving Quadratic Equations by Completing the Square Algebra I M4 Lesson 14: Deriving the Quadratic Formula Algebra I M4 Lesson 15: Using the Quadratic Formula Algebra II M1 Lesson 31: Systems of Equations

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		Cluster: Solve systems of equation	ons.
		AI-A.REI.6a Solve systems of linear equations in two variables both algebraically and graphically.	Algebra I M1 Lessons 22–23: Solution Sets to Simultaneous Equations Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities Algebra I M4 Lesson 24: Modeling with Quadratic Functions
		AI-A.REI.7a Solve a system, with rational solutions, consisting of a linear equation and a quadratic equation (parabolas only) in two variables algebraically and graphically.	Algebra II M1 Lesson 31: Systems of Equations Algebra II M1 Lesson 32: Graphing Systems of Equations

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		Cluster: Represent and solve equ	nations and inequalities graphically.
		AI-A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane.	Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables
		AI-A.REI.11 Given the equations $y = f(x)$ and $y = g(x)$: i) recognize that each x -coordinate of the intersection(s) is the solution to the equation $f(x) = g(x)$; ii) find the solutions approximately using technology to graph the functions or make tables of values; and iii) interpret the solution in context.	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too Algebra II M1 Lesson 36: Overcoming a Third Obstacle to Factoring—What If There Are No Real Number Solutions? Algebra II M3 Lesson 24: Solving Exponential Equations

Conceptual Category	Domain	Standards for Mathematical Content		Aligned Components of Eureka Math
		AI-A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.		Algebra I M1 Lesson 21: Solution Sets to Inequalities with Two Variables Algebra I M1 Lesson 22: Solution Sets to Simultaneous Equations Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
Functions	1 0	Cluster: Understand the concept of a function and use function notation.		
	Functions	AI-F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.		Algebra I M3 Lesson 1: Integer Sequences—Should You Believe in Patterns? Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		AI-F.IF.2	Algebra I M3: Linear and Exponential Functions
		Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	
		AI-F.IF.3 Recognize that a sequence is a function whose domain is a subset of the integers.	Algebra I M3 Lesson 2: Recursive Formulas for Sequences Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences
			Algebra I M3 Lesson 4: Why Do Banks Pay YOU to Provide Their Services?

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math				
		Cluster: Interpret functions that arise in applications in terms of the context.					
		AI-F.IF.4 For a function that models a relationship between two quantities: i) interpret key features of graphs and tables in terms of the quantities; and ii) sketch graphs showing key features given a verbal description of the relationship.	Algebra I M3 Lesson 13: Interpreting the Graph of a Function Algebra I M3 Lesson 14: Linear and Exponential Models—Comparing Growth Rates Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$ Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$ Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways Algebra I M5: A Synthesis of Modeling with Equations and Functions				

Conceptual Category	Domain	Standards for Mathematical Content		Aligned Components of Eureka Math
		AI-F.IF.5		Algebra I M3 Topic B: Functions and Their Graphs
		Determine the domain of a function from its graph and, where applicable, identify the appropriate		Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
		domain for a function in context.		Algebra I M5 Lesson 1: Analyzing a Graph
				Algebra I M5 Lesson 4: Modeling a Context from a Graph
	AI-F.IF.6 Calculate and interpret the average rate of change of a function over a specified interval.	Algebra I M3 Lesson 6: Exponential Growth—U.S. Population and World Population		
			Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems	
			Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions	
				Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables
				Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
				Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways
				Algebra I M5 Lesson 4: Modeling a Context from a Graph

Conceptual Category	Domain	Standards for Mathematical Content		Aligned Components of Eureka Math	
		Cluster: Analyze functions using different representations.			
		AI-F.IF.7			
		Graph functions and show key features of the graph by hand and by using technology where appropriate.			
		a. Graph linear, quadratic, and		Algebra I M3 Lesson 11: The Graph of a Function	
		exponential functions and show key features.	Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$		
				Algebra I M3 Lesson 16: Graphs Can Solve Equations Too	
				Algebra I M3 Lesson 19: Four Interesting Transformations of Functions	
				Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions	
				Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$	
				Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$	
				Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		AI-F.IF.7 a. (cont.)	Algebra I M4 Topic C: Function Transformations and Modeling Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions
			Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
		b. Graph square root, and piecewise-defined functions, including step functions and absolute value functions and show key features.	Algebra I M3 Topic C: Transformations of Functions Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions Algebra I M4 Lesson 19: Translating Graphs of Functions Algebra I M4 Lesson 20: Stretching and Shrinking Graphs
			of Functions

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		AI-F.IF.8 Write a function in different but equivalent forms to reveal and explain different properties of the function. a. For a quadratic function, use an algebraic process to find zeros, maxima, minima, and symmetry of the graph, and interpret these in terms of context.	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$ Algebra I M4 Topic B: Using Different Forms for Quadratic Functions Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$ Algebra I M4 Lesson 23: Modeling with Quadratic Functions
		AI-F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math		
	Building Functions	Cluster: Build a function that models a relationship between two quantities.			
	Tunctions	AI-F.BF.1 Write a function that describes a relationship between two quantities. a. Determine a function from context. Define a sequence explicitly or steps for calculation from a context.	Algebra I M3: Linear and Exponential Functions Algebra I M5: A Synthesis of Modeling with Equations and Functions		
		Cluster: Build new functions from existing functions.			
		AI-F.BF.3a Using $f(x) + k$, k $f(x)$, and $f(x + k)$: i) Identify the effect on the graph when replacing $f(x)$ by $f(x) + k$, k $f(x)$, and $f(x + k)$ for specific values of k (both positive and negative); ii) find the value of k given the graphs; iii) write a new function using the value of k ; and iv) use technology to experiment with cases and explore the effects on the graph.	Algebra I M3 Topic C: Transformations of Functions Algebra I M4 Lesson 19: Translating Graphs of Functions Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$		

Conceptual Category	Domain	Standards for Mathematical Content Aligned Components of Eureka Math		
	Linear, Quadratic,	Cluster: Construct and compare linear, quadratic, and exponential models and solve problems.		
	and Exponential Models	AI-F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.		
		a. Justify that a function is linear because it grows by equal differences over equal intervals, and that a function is exponential because it grows by equal factors over equal intervals.	Algebra I M3 Lesson 14: Linear and Exponential Models—Comparing Growth Rates	
		b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another, and therefore can be modeled linearly.	Algebra I M3 Lesson 5: The Power of Exponential Growth Algebra I M3 Lesson 6: Exponential Growth—U.S. Population and World Population Algebra I M5: A Synthesis of Modeling with Equations and Functions	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another, and therefore can be modeled exponentially.	Algebra I M3 Lesson 5: The Power of Exponential Growth Algebra I M3 Lesson 6: Exponential Growth—U.S. Population and World Population Algebra I M3 Lesson 7: Exponential Decay Algebra I M5: A Synthesis of Modeling with Equations and function
		AI-F.LE.2 Construct a linear or exponential function symbolically given: i) a graph; ii) a description of the relationship; iii) two input-output pairs (include reading these from a table).	Algebra I M3: Linear and Exponential Functions Algebra I M5: A Synthesis of Modeling with Equations and Functions Algebra II M3 Lesson 1: Integer Exponents
		AI-F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	Algebra I M3 Lesson 5: The Power of Exponential Growth Algebra I M3 Lesson 6: Exponential Growth—U.S. Population and World Population Algebra I M3 Lesson 14: Linear and Exponential Models— Comparing Growth Rates Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again

Conceptual Category	Domain	Standards for Mathematical Content		Aligned Components of Eureka Math		
		Cluster: Interpret expressions for functions in terms of the situation they model.				
		AI-F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context.		Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems		
Statistics and	Interpreting Categorical and	Cluster: Summarize, represent, a variable.	an	d interpret data on a single count or measurement		
Probability	Quantitative Data	AI-S.ID.1 Represent data with plots on the real number line (dot plots, histograms, and box plots).		Algebra I M2: Descriptive Statistics		
		AI-S.ID.2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, sample standard deviation) of two or more different data sets.		Algebra I M2 Lesson 3: Estimating Centers and Interpreting the Mean as a Balance Point Algebra I M2 Topic B: Describing Variability and Comparing Distributions		
		AI-S.ID.3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).		Algebra I M2: Descriptive Statistics		

Conceptual Category	Domain	Standards for Mathematical Content		Aligned Components of Eureka Math
		Cluster: Summarize, represent, and interpret data on two categorical and quantitative variables.		
		AI-S.ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including		Algebra I M2 Topic C: Categorical Data on Two Variables
		joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.		
		AI-S.ID.6 Represent bivariate data on a scatter plot, and describe how the variables' values are related.		
		a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.		Algebra I M2 Lessons 12–13: Relationships Between Two Numerical Variables
				Algebra I M2 Lesson 19: Interpreting Correlation Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables
				Algebra I M5 Lesson 7: Modeling a Context from Data

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		Cluster: Interpret linear models.	
		AI-S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	Algebra I M2 Lesson 14: Modeling Relationships with a Line
		AI-S.ID.8 Calculate (using technology) and interpret the correlation coefficient of a linear fit.	Algebra I M2 Lesson 19: Interpreting Correlation Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables Algebra I M5 Lesson 7: Modeling a Context from Data
		AI-S.ID.9 Distinguish between correlation and causation.	Algebra I M2 Lesson 11: Conditional Relative Frequencies and Association Algebra I M2 Lesson 19: Interpreting Correlation Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables